A Characterization of Constructive Dimension

نویسنده

  • Satyadev Nandakumar
چکیده

In the context of Kolmogorov’s algorithmic approach to the foundations of probability, Martin-Löf defined the concept of an individual random sequence using the concept of a constructive measure 1 set. Alternate characterizations use constructive martingales and measures of impossibility. We prove a direct conversion of a constructive martingale into a measure of impossibility and vice versa, such that their success sets, for a suitably defined class of computable probability measures, are equal. The direct conversion is then generalized to give a new characterization of constructive dimensions, in particular, the constructive Hausdorff dimension and the constructive packing dimension, and their generalizations, the constructive scaled dimension and the constructive scaled strong dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kolmogorov complexity characterization of constructive Hausdorff dimension

Lutz [7] has recently developed a constructive version of Hausdorff dimension, using it to assign to every sequence A ∈ C a constructive dimension dim(A) ∈ [0,1]. Classical Hausdorff dimension [3] is an augmentation of Lebesgue measure, and in the same way constructive dimension augments Martin– Löf randomness. All Martin–Löf random sequences have constructive dimension 1, while in the case of ...

متن کامل

Effective dimension in some general metric spaces

We introduce the concept of effective dimension for a general metric space. Effective dimension was defined by Lutz in (Lutz 2003) for Cantor space and has also been extended to Euclidean space. Our extension to other metric spaces is based on a supergale characterization of Hausdorff dimension. We present here the concept of constructive dimension and its characterization in terms of Kolmogoro...

متن کامل

Scaled Dimension of Individual Strings

We define a new discrete version of scaled dimension and we find connections between the scaled dimension of a string and its Kolmogorov complexity and predictability. We give a new characterization of constructive scaled dimension by Kolmogorov complexity, and prove a new result about scaled dimension and prediction.

متن کامل

The Dimensions of Individual Strings and Sequences

A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0, 1]. Sequences that ar...

متن کامل

Schnorr Dimension

Following Lutz’s approach to effective (constructive) dimension, we define a notion of dimension for individual sequences based on Schnorr’s concept(s) of randomness. In contrast to computable randomness and Schnorr randomness, the dimension concepts defined via computable martingales and Schnorr tests coincide, i.e. the Schnorr Hausdorff dimension of a sequence always equals its computable Hau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2008